
Filesystems in LiveCD
J. R. Okajima

2010/12

In the majority of cases, LiveCD uses Squashfs, tmpfs, and AUFS. This report
compares usage of squashfs with others to implement LiveCD.

Ancient Age
A long long time ago, there was an approach to implement LiveCD by “shadow direc-
tory”. It may be a rather old name but used very widely. For example, when we have
source files under src/, and if we build it under the directory for multiple architec-
tures, then we will need to remove all the built files for each build. It is a waste of time.
In order to address this problem, make another directory obj/, create symbolic links
under it, and build under obj/. This is the shadow directory approach. All the built
object files are created under obj/ and the developers do not need to care about the
difference of the build directory.

LiveCD implemented by this approach (readonly FS + tmpfs + shadow dir) suc-
ceeded to redirect the file I/O, eg. read from readonly FS and write to tmpfs, but it
brought huge number of symbolic links. Obviously it was not the best approach.

Squashfs and AUFS
Later LiveCDs adopt a stackable filesystem, eg. Unionfs or AUFS. They both intro-
duce a hierarchy to mounting filesystems, and mount a writable filesystem transpar-
ently over readonly filesystems, and provide essential features of redirecting file I/O to
layers and internal copy-up between layers which enables modification the files on the
readonly filesystems logically. Since readonly filesystems can be specified more than
one, LiveCD can handle them as an application packages such like compiler package,
office suite. For example, SLAX LiveCD provides this “modularize” and users can
choose and add them as AUFS layers.

Current LiveCDs generally uses tmpfs or HDD as an upper writable layer (which
is called “branch”), squashfs for the lower readonly layers, and make them stacked by
AUFS.

Example of mounting squashfs and aufs

(boot script in the initramfs)

Figure 1: Example of mounting squashfs and aufs

fileA −→ −−−−−−−−−−−−−−−−→ ↓
↓
↓

aufs ↓
stackable ↓ ←− fileA© ←− ↓
filesystem ↓ fileB

↓ fileC

↓
↓
↓ tmpfs squashfs

branch(layer) ↓ −→ −−−−−−−→ © fileA

filesystem fileB

fileC

loopback
block device (none) /dev/loop0

︸ ︷︷ ︸ iso9660
filesystem ↓ fileX

layer −−−−−−−−→ © squashfs.img

fileY

block device
layer /dev/cdrom

mount -o ro /dev/cdrom /cdrom

mount -o ro,loop /cdrom/squashfs.img /squashfs

mount -t tmpfs none /tmpfs

cd /tmpfs; mkdir -p tmp var/log; chmod 1777 tmp; cd /

mount -t aufs -o br:/tmpfs:/squashfs none /aufs

(and then boot the system with /aufs as a root directory)

Fig.1 represents the filesystem and block device layers after above script.
For your information, Fig.2 and Fig.3 show the layers of an ordinary mount and a

loopback mount individually.
But, as you might know, there are other approaches to implement these features,

and this report introduces you “cloop” and “dm-snapshot.”

CLOOP — Compression in Loopback Block Device
The module, cloop (compressed loopback block device) brings the compression feature
into a block device layer instead of filesystem layer. This module is not merged into

Figure 2: Normal mount

fileA −−→ −→ ↓
↓
↓

ext2 ↓
filesystem fileA© ←− ↓

layer fileB

fileC

block device
layer /dev/sda1

Figure 3: Loopback mount

fileA −−−→ −→ ↓
↓
↓

squashfs ↓
loopback fileA© ←− ↓

mount fileB

fileC

loopback
block device /dev/loop0

︸ ︷︷ ︸ ext2
filesystem ↓ fileX

layer −−−−−−−−→ © squashfs.img

fileY

block device
layer /dev/sda1

linux kernel mainline.

http://debian-knoppix.alioth.debian.org/packages/cloop/cloop_2.636-1.tar.gz

Since this is a feature of block device layer, the filesystem type never matter. Any
type of filesystem can be compressed. Create a filesystem image file, copy the neces-
sary files into it, and then create a cloop image file by create compressed fs com-
mand (aliased advfs).

Create and mount a cloop image

$ dd if=/dev/zero of=/tmp/ext2.img bs=10M count=1

$ mkfs -t ext2 -F -m0 -q -O dir_index /tmp/ext2.img

$ sudo mount -o loop /tmp/ext2.img /mnt

$ tar -C /bin -cf - . | sudo tar -C /mnt -xpf -

$ sudo umount /mnt

$ create_compressed_fs -q -L9 /tmp/ext2.img /tmp/ext2.cloop.img

$ sudo losetup -r /dev/cloop0 /tmp/ext2.cloop.img

$ mount -o ro /dev/cloop0 /mnt

(and then use /mnt as ext2)

Layers do not change essentially from Fig.3, but the differences are

• filesystem independent, we can compress any type of filesystem.

• the device changes from /dev/loopN to /dev/cloopN. /dev/cloop0 in the
example is created by the cloop module.

And cloop does not support writing, it is readonly. So a stackable filesystem like
AUFS will be necessary to support writing logically.

The cloop module is adopted by Knoppix LiveCD and its variants.

DM Snapshot — Snapshot by Device Mapper
Instead of a stackable filesystem, LiveCD can use the “snapshot” feature of device
mapper (DM) which is also a feature in the block device layer. Usually it is used
by another abstract tool such as LVM, but we can handle it directly via dmsetup(8)

command.
To use the snapshot feature, give DM two block devices, “original device” and

“COW device (Copy-on-Write)”. Then all writes will be redirected to the COW device,
and reads will be redirected to either the COW or original device. This redirection is
exactly the behaviour which stackable filesystems provide. All the changes are stored
in the COW device, and the original device never change.

Block based COW by DM

(create a 16MB ext2 image)

$ dd if=/dev/zero of=/tmp/ext2.img bs=1M count=16

$ mkfs -t ext2 -F -q /tmp/ext2.img

$ sudo mount -o loop /tmp/ext2.img /mnt

$ > /mnt/fileA

http://debian-knoppix.alioth.debian.org/packages/cloop/cloop_2.636-1.tar.gz

Figure 4: Example of mounting dm-snapshot

loopback
mount ext2

device mapper
(snapshot) /dev/mapper/dm-cow

(loopback)
block device /dev/loop1 /dev/loop0

filesystem a part of ext2 ext2
layer cow.img ext2.img

block device
layer /dev/sda1

$ sudo umount /mnt

(create a 1MB sparse file for COW image)

$ dd if=/dev/zero of=/tmp/cow.img bs=1 count=1 \

seek=$((1024 * 1024 - 1))

(attach loopback block device for each image files)

$ sudo losetup -r /dev/loop0 /tmp/ext2.img

$ sudo losetup /dev/loop1 /tmp/cow.img

(combine two devices)

$ echo 0 $(du /tmp/ext2.img | cut -f1) snapshot \

/dev/loop0 /dev/loop1 p 0 | sudo dmsetup create dm-cow

(mount the combined device)

$ sudo mount /dev/mapper/dm-cow /mnt

(and then use /mnt as ext2. all the writes to /mnt are stored into

/tmp/cow.img, and /tmp/ext2.img never change)

Although the behaviour looks like a stackable filesystem, the target of the oper-
ations is different. DM operates on block device/sector, but a stackable filesystem
operates on filesystem/file. For example, there exists a file sized 2KB in a block device
whose block size is 512B. In other words, the file consumes 4 blocks. When we write
a byte at the offset of 1KB in the file (the first byte in the third block), then DM will
write only one block (the third block) to the COW device. (Strictly speaking, some

internal information such like timestamps will be written into the inode block). Now
the COW device contains only a part of ext2 while the original device is a perfect ext2
which contains all blocks unchanged. So we cannot mount the COW device alone as a
valid filesystem. On the other hand, stackable filesystem operates on file. It copies the
whole file (2KB) from the lower layer to the upper layer, and then writes the originally
requested data to the file on the upper layer.

In efficiency, DM snapshot is better since it copies only one block. But in some
usability, it may become bad. In stackable filesystem, it is easy to see which file was
updated if we run ls(1) to the upper layer. Additionally diff(1) between the lower
and upper layers is available too, which may be useful for backup.

In DM snapshot, it is impossible to mount the COW device alone, and of course
ls(1) will not work for it. The COW device always has to be combined with the same
unique original device. If some modifications happen in the original device during it is
not combined to the COW device, then some conflict will happen and the COW device
will not be usable anymore.

DM operates on the existing devices. It is possible too even if the device was
created by previous DM operation. By this feature, we can make the snapshots stacked.
In other words, the multiple layers can be specified.

Note that the filesystem on the original device has to be writable one while the
original device is readonly, because it is the feature of filesystem to write data to the
file. If we create a filesystem which is natively readonly, squashfs or something, on the
original device and add the COW device, then we cannot write to it since the filesys-
tem is readonly. But we want compression, in deed. It is very hard to make LiveCD
contained the full Linux system without compression. There is a LiveCD which adopts
DM, Fedora (at least version 12). Fedora creates an ext3 image file (actually it is ext4),
and then creates a squashfs image from this ext3. In this case, Fedora mounts it by
nested loopback mounted. Fig.5 shows the layers with a little simplification.

Example of using both of DM and squashfs

$ sudo mount -o ro /dev/cdrom /cdrom

$ sudo mount -o ro,loop /cdrom/squashfs.img /squashfs

$ sudo losetup -r /dev/loop1 /squashfs/ext3.img

$ dd if=/dev/zero of=/tmp/cow.img bs=1 count=1 \

seek=$((1024 * 1024 - 1))

$ sudo losetup /dev/loop2 /tmp/cow.img

$ echo 0 $(du /tmp/ext3.img | cut -f1) snapshot \

/dev/loop1 /dev/loop2 p 0 | sudo dmsetup create dm-cow

$ sudo mount /dev/mapper/dm-cow /mnt

It may be a little annoying, but I think I should describe about this figure a little
more. Trace Fig.5 from bottom to top. When we mount CD-ROM, we find only one
file named squashfs.img in it. After loopback mounting it, we see only one file
(again) named ext3.img. And we attach /dev/loop1 to make it usable as a loopback
block device. We also create an empty file separately and attach /dev/loop2 to it.
Finally we can create a new device dm-cow from loop1 as the original device and
loop2 as the COW device, and mount it as a writable filesystem finally.

Figure 5: Example of using both of DM and squashfs

ext3

DM
(snapshot) /dev/mapper/dm-cow

doubly
loopback /dev/loop1

︸ ︷︷ ︸
loopback ↓ squashfs

mount −−−−−−→ © ext3.img

(loopback)
block device /dev/loop2 /dev/loop0

︸ ︷︷ ︸ ︸ ︷︷ ︸
filesystem ↓ tmpfs ↓ iso9660

layer −−−−−−→ © cow.img −−−−−−→ © squashfs.img

block device
layer /dev/cdrom

Nested Loopback Mount and Squashfs Cache

Now we think about pros and cons of this nested loopback mount scheme.
Firstly the resource consumption comes to our mind. Adding a new block device

causes a new caching for it. It may be double-caching. And when we mount something,
the system creates an object per mount and adds it to the mount hierarchy which means
consuming some memory and necessary to traverse the tree when we access to a file.
Obviously an extra loopback device is consumed. Generally the minor device number
is assigned from 0 to every block device, and the number is limited. For loopback block
device, by default, from 0 to 7, eight devices are created. If we specify a parameter to
the loopback block device module, we can extend the limit upto 255. But we should
take care the number of consumed loopback block devices since this scheme consumes
it twice in roughly speaking. Additionally the kernel thread named loopN is invoked
and stays resident for each loopback mount, which leads to more consumption of CPU
time, process ID space, and scheduler.

Hold it!
I might write too bad about this scheme. Actually it has a very big advantage. It is

caching of the decompressed result in squashfs.

In order to gain higher compression (smaller size in result), mksquashfs basically
compresses per a specified size (a block size in squashfs. 128KB by default). When the
target file is smaller than this size, it is gathered with other small files and compressed
together. This is called fragment block in squashfs. Thus when we have fileA whose
size is 1KB and also a 1KB file named fileB, and read fileA only, then squashfs
internally reads and decompresses fileB too.

Squashfs adopts an original cache scheme for fragment blocks instead of generic
caching (page cache), which is called fragment cache.

The size of fragment cache is configurable. It is CONFIG SQUASHFS FRAGMENT CACHE SIZE, and its
default value is 3.

The decompressed fileA will be stored in page cache as a generic file read, but
other files in the same fragment block will not. They are stored in squashfs fragment
cache only (as compressed). If we read fileB during its fragment block is in fragment
cache, then it is OK. Otherwise, squashfs reads and decompresses it. Since the size of
fragment cache is not so large, when our access pattern is very random, the fragment
block will be out of cache easily and the speed performance will be damaged in result.
Of course, we can expand the size of fragment cache by configuration, but the fragment
cache in squashfs is allocated constantly and never grow nor shrink. So the too large
value may lead to a pressure of memory.

On the other hand, by nested loopback mount, the second loopback block device
caches all of the decompressed result in page cache including the fragment blocks. So
the chances to decompress the same block will reduce, and it will contribute the speed
performance. As long as this is nested, it may cache things unnecessary doubly. But
the benefit is large and the page cache discards data in the order of less used. In this
scheme, the lower cache (squashfs) may be discard first, and then upper cache (ext3 in
the above example) is subject to survive. Finally, the gained speed is larger than the

Table 1: combination of modules

lower layer upper layer stack

squashfs
tmpfs aufs

anyfs + cloop
anyfs but writable + squashfs + nested loopback dm-snapshot

demerits described previously. And this squashfs does not contain the small files, so
the fragment block will never exist.

mksquashfs has an option -no-fragments which prohibits creating fragment blocks. It is very effec-
tive for random access pattern but the size of the squashfs grows.

Performance of Reading and Decompressing
Generally CPU is much faster than block device, and the decompression consumes
much CPU time. This issue may become meaningful when reading from the com-
pressed filesystem.

In generic desktop systems, it is faster to read the uncompressed file than the com-
pressed one due to the CPU cost to decompress. When the block device is much slower,
very much, the speed difference between CPU and block device grows, and finally there
will be a case which is slower to read the uncompressed file than the compressed one.
For instance, in the case of the size of a 4KB file becomes 1KB after compression,
reading and decompress 1KB may be faster than reading 4KB from a very slow block
device.

Comparing the Approaches
Here we have reviewed the necessary features of squashfs, aufs, cloop, and dm-snapshot.
Now we are going to consider the combination of them to implement LiveCD. Those
factors are compressed lower readonly layer, upper writable layer, and how to com-
bine (stack) them. As described earlier, there is a condition about filesystem for dm-
snapshot, finally the cases will be such like Tbl.1.

Ok, we get all necessary features and know how to combine and construct them
for LiveCD. How about their performance? To compare these combinations, the actual
content will be categorized by two types. It means “how to union” and the perfomance
of “compressed readonly layer.”

Comparing “How to Union”
In comparing aufs and dm-snapshot, it is easy to estimate that dm-snapshot shows
better performance due to the amount of copy-up described earlier. Also dm-snapshot
will be better in readdir(3) too. In all other points, the actual operation is to traverse

Table 2: Comparing “how to union”

find copy-up
(usr, sys, elapsed) (usr, sys, elapsed)

ext2 0.89, 1.32, 3.02 0.00, 0.03, 0.36
AUFS 1.13, 3.14, 5.01 0.00, 0.02, 0.39

dm-snapshot 0.89, 1.29, 3.02 0.00, 0.02, 0.36
vanilla kernel 2.6.33, Intel Core2 Duo 3GHz, x86 64,
4GB RAM
Executed on copied /bin, /etc (1661 files).

layers. Anyway, dm-snapshot will show the better performance everywhere since the
difference is the fact that one is block device and the other is filesystem. Accessing
a filesystem causes accessing a underlying block device internally. It is definetly an
overhead in filesystem in comparing.

Points

To compare them, we use these cases. Although the loopback mount is used in read
LiveCD, we don’t take it here just because make things simpler.

1. ext2

2. ext2(RO) + ext2(RW) + aufs

3. ext2 + dm-snapshot

And we measure the elapsed time to do these.

1. find(1)

2. append one byte to the existing file to cause the copy-up.

In order to show the difference clearly, we measure these several times since the
small difference is hard to distinguish. And the result is Tbl.2. The measurement
scripts are included in the attachment. Refer them if you want.

The result shows almost equivalent as we expected. But this measurement looks
too small, the number of file and the size of them look small too. So we could not see
meaningful difference in comparing copy-up. Comparing find(1) shows that aufs is
slowest, and I am afraid it glows as the number of layers grows. It may be same for
dm-snapshot too, but the rate will be smaller than aufs’s.

Comparing “Compressed Readonly Filesystem”
Old Reports

Squashfs has a long history, and there have been made several reports in the past.
A rather new one is made by Wenqiang Song, posted to LKML on 2009/6, titled
“Squashfs 4.0 performance benchmark.”

http://marc.info/?l=linux-kernel&m=124447049111108&w=2

In the report, he compared squashfs with ext4 in directory lookup, sequential I/O,
and random I/O. Here summarizes roughly,

• squashfs is fast as ext4 or more.

• squashfs consumes more CPU(%sys).

• squashfs runs faster in loopback mount.

• limited RAM size makes squashfs slower, even in loopback mount.

And the compared points in the report is equivalent to the older one which took
squashfs 2.0, 2.1 and others (“SquashFsComparisons”. the last update was done in
2008/5).

http://www.celinuxforum.org/CelfPubWiki/SquashFsComparisons

The report took ext3, iso9660, zisofs(compressed filesystem), cloop, squashfs 2.0,
and 2.1. The result shows, in general, squashfs 2.1 is better which means smaller and
faster. If we look the reports closer, we also find that squashfs consumes CPU(%sys)
more than ext3.

Support for LZMA

Official Support Both of squashfs and cloop supports ZLIB compression in the be-
ginning. And then support for LZMA compression was added. Squashfs tried support-
ing LZMA for linux-2.6.34, and it looks working.

http://git.kernel.org/?p=linux/kernel/git/pkl/squashfs-lzma.git;a=summary

git://git.kernel.org/pub/scm/linux/kernel/git/pkl/squashfs-lzma.git

But the merging into 2.6.34 mainline was not done, and it is undone still.

While squashfs-lzma was not merged, supporting LZO was merged into linux-2.6.36. And supporting
XZ is also being implemented.

the Sqlzma Patch In the history, there were other implementations to make squashfs
to support LZMA. Among those patches, the sqlzma patch was widely used.

http://www.squashfs-lzma.org

The sqlzma patch uses the LZMA implementation in the 7-ZIP package which is
developed separately. It is not so rare to port the user space code into kernel space, but
porting the user space code written in C++ into kernel space is rather rare. It must be
a power play. The official squashfs-lzma support for linux-2.6.34 also uses 7-ZIP, but
the functions are written in C language. It must be more smooth porting. The reason
sqlzma patch took C++ is simple. There did not exist C functions in 7-ZIP when the
sqlzma patch was developed.

And the sqlzma patch implements the “hybrid compression” approach. Generally,
the compression is not so effective for the random data or binary files. And in some

http://marc.info/?l=linux-kernel&m=124447049111108&w=2
http://www.celinuxforum.org/CelfPubWiki/SquashFsComparisons
http://git.kernel.org/?p=linux/kernel/git/pkl/squashfs-lzma.git;a=summary
git://git.kernel.org/pub/scm/linux/kernel/git/pkl/squashfs-lzma.git
http://www.squashfs-lzma.org

cases, the compressed result can be larger than the uncompressed original data. In the
system which supports both of ZLIB and LZMA, users may want to take the smaller
one, but we cannot decide it until both compressions are completed. Thus, based upon
the native behaviour that mksquashfs compresses per specified size (128KB by de-
fault), the sqlzma patch tries compressing in both algorithms and take the smaller re-
sult. It compresses data by ZLIB first since it runs faster. When the result becomes
smaller than the original data, then it tries compressing the same data by LZMA be-
cause such data is expected to be smaller. After comparing the two results, the sqlzma
patch takes the smaller one. If the data does not become smaller by the first ZLIB,
the sqlzma patch estimates such data will not become smaller even if it is compressed
by LZMA, and decides to take the uncompressed original data. In other words, the
sqlzma patch chooses one as its final result among the uncompressed original data, the
compressed result by ZLIB, and the compressed result by LZMA. Of course the time
to compress takes longer. In decompression, it is easy to decide how the data was com-
pressed by the information to indicate whether the block was compressed or not which
squashfs natively has, and by the header of the compressed data to indicate the data
was compressed by ZLIB or LZMA. There is no necessary to add an extra indicator to
represent how the data is compressed.

Support in Cloop Cloop also began supporting LZMA since the end of 2004 by an
external package called advancecomp. But it is used in user space only (at least in
version 2.636), eg. create compressed fs command support LZMA but the kernel
module doesn’t.

Support in Kernel Obviously the decompression is done in kernel space while the
compression is done in user space, which means kernel has to support the LZMA de-
compression. The ZLIB decompression is already supported for a long time, but the
support for LZMA decompression is rather new. The support began in linux-2.6.30
(2009/6) and the LZO decompression is supported since linux-2.6.33 (2010/2).

In this report, it is needless to say compare both of squashfs and cloop in ZLIB com-
pression, but it does not sound interesting unless other compressions are not compared.
For squashfs, I try incorporating the official LZMA support which had not been merged
into 2.6.34. And the sqlzma patch for the old linux-2.6.27+squashfs 3.4.

Parallelizing the Decompression in Squashfs

Natively the decompression in squashfs is serialized. For instance, two processes read
fileA and fileB in squashfs individually at the same time, squashfs waits for the
completion of the first decompression before starting the second decompression. It is
bad for modern multi core processors. A patch to address this problem was posted to
LKML. It supports only the original ZLIB decompression, but I will try comparing it
too. The sqlzma patch already implements this parallel decompression.

http://marc.info/?l=linux-fsdevel&m=127884119303014&w=2

[RFC 0/2] squashfs parallel decompression
[RFC 1/2] squashfs parallel decompression, early wait on buffer
[RFC 2/2] squashfs parallel decompression, z stream per cpu

Points

To compare the above issues, decide the compared points like this.

1. ext2

2. squashfs-4.0 GIP

3. squashfs-4.0 GIP -no-fragments

4. squashfs-4.0 GIP + parallel decompression patch

5. squashfs-4.0 GIP -no-fragments + parallel decompression patch

6. ext2 + cloop GZIP

7. ext2 + squashfs-4.0 GIP + nested loopback

8. squashfs-4.0 LZMA (linux-2.6.34-rc6)

9. squashfs-3.4 + sqlzma patch (linux-2.6.27.4)

It is possible to make it faster and get better compression if we specify some param-
eters such as block size or the LZMA dictionary size, but I don’t want to do it here since
it will take more time to decide the parameters. Additionally I expect the tendency of
the results will not change. So in this report, all parameters are left as default.

All the kernel version is linux-2.6.33 except squashfs 4.0 LZMA and squashfs
3.4+sqlzma. For squashfs 4.0 LZMA it is 2.6.34-rc6, and for squashfs 3.4+sqlzma
2.6.27.4. And I added some minor fixes to cloop-2.636 since it was failed to compile
(cloop-2.636-2.6.33.patch).

Also the measurement is as below, and compare the compressed size, the elapsed
time to read and decompress, and CPU time. It is another kernel thread to consume
most CPU time, but the simple time(1) measures only the CPU time of find(1)
and cat(1). So I measure the CPU time by vmstat(8). I know it becomes a little
rough. If we used the kernel profiler or something, it might be possible to measure
more correct CPU time.

1. read(2) files in the order of readdir(3) returned (as sequential access pattern)

2. read(2) files in the random order (as random access pattern)

For each case, run cat(1) repeatedly as a single process, and run multiple cat(1)

concurrently. Similar to comparing “How to Union”, run the measurement several
times. And the results are Fig.6 – Fig.9, and Tbl.3.

http://marc.info/?l=linux-fsdevel&m=127884119303014&w=2

Figure 6: Comparing “compressed readonly filesystem” – sequential + single

ext2 too long 27.8

sq40 usr sys idle 9.0

sq40para sys idle 8.9

sq40nofrag sys idle 8.6

sq40nofrag para sys idle 8.6

cloop sys idle wait 15.2

sq40nested sys idle wait 11.7

sq40lzma too long 29.7

sqlzma34 sys idle 21.1

Figure 7: Comparing “compressed readonly filesystem” – sequential + multi

ext2 2.2

sq40 sys wait 23.7

sq40para sys 8.0

sq40nofrag sys 8.7

sq40nofrag para sys 7.6

cloop sys idle wait 22.7

sq40nested sys 2.7

sq40lzma too long 297.5

sqlzma34 sys 23.4

Figure 8: Comparing “compressed readonly filesystem” – random + single

ext2 sys idle 4.2

sq40 too long 44.6

sq40para too long 44.6

sq40nofrag sys idle 16.3

sq40nofrag para sys idle 16.4

cloop sys idle wait 22.8

sq40nested sys idle 5.1

sq40lzma too long 280.0

sqlzma34 too long 184.8

Figure 9: Comparing “compressed readonly filesystem” – random + multi

ext2 sys 2.4

sq40 too long 42.8

sq40para sys 23.4

sq40nofrag sys 13.4

sq40nofrag para sys 10.3

cloop sys wait 25.7

sq40nested sys 2.9

sq40lzma too long 305.1

sqlzma34 too long 94.7

Table 3: Comparing “compressed readonly filesystem”

elapsed CPU (dual core)
size time %io-

(blocks, KB) (sec) %usr %sys %idle wait

ext2 —
seq

single 27.8 4 22 59 15
multi 2.2 10 57 33 0

rand
single 4.2 6 34 60 0
multi 2.4 10 57 33 0

sq40
seq

single 9.0 3 41 53 3
437512, multi 23.7 1 85 5 9
218536

rand
single 44.6 1 48 51 0
multi 42.8 1 87 7 5

sq40para
(parallel

decompression)
ditto

seq
single 8.9 3 42 55 0
multi 8.0 4 85 11 0

rand
single 44.6 1 49 50 0
multi 23.4 1 93 5 1

sq40nofrag
seq

single 8.6 3 40 53 4
458264, multi 8.7 4 77 11 8
228904

rand
single 16.3 2 45 53 0
multi 13.4 3 85 9 4

sq40nofrag para
(parallel

decompression)
ditto

seq
single 8.6 3 41 55 1
multi 7.6 4 74 13 9

rand
single 16.4 2 44 53 1
multi 10.3 3 82 10 5

cloop
seq

single 15.2 1 38 23 38
521632, multi 22.7 1 37 7 54
260552

rand
single 22.8 1 46 21 32
multi 25.7 2 52 4 42

sq40nested
seq

single 11.7 2 36 29 33
515336, multi 2.7 8 59 33 0
257412

rand
single 5.1 5 36 56 3
multi 2.9 8 59 33 0

sq40lzma
(2.6.43-rc6)

seq
single 29.7 1 47 51 1

391616, multi 297.5 0 70 8 22
195612

rand
single 280.0 0 50 50 0
multi 305.1 0 70 25 5

sqlzma34
(2.6.27.4)

seq
single 21.1 1 47 52 0

390592, multi 23.4 1 94 4 1
195100

rand
single 184.8 0 50 50 0
multi 94.7 0 98 1 1

Intel Core2 Duo 3GHz, x86 64, 4GB RAM
Executed on copied /usr/share (59212 files).

File Size Obviously and expectedly, adding the -no-fragments option makes the
squashfs image smaller. But it is highly depends upon the number of smaller files. With
using LZMA (even without -no-fragments), we get smaller (reduced by 11.1%). By
the sqlzma patch which adopts the hybrid algorithm is the smallest (reduced by 11.2%).

The cloop image file looks larger here, but it may be due to this measurement. The
original filesystem image was ext2 and since it is annoying for me to decide the just
fitting size, the size of the ext2 image file contains unused region. (in this measurement,
the original filesystem size was 732MB, and 75MB is unused). Although I have not
checked how I could reduce the size if I cut this unused region, I guess it will become
smaller. In squashfs, the unused region is zero or smallest. If I use iso9660 instead, the
size may be smaller too. Of course, specifying the parameters like block size is much
easeir way.

The same original ext2 image is used for sq40nested which will gets the benefit of
no fragment blocks at all and nested caching. While using the same data, sq40nested
gets smaller result. I guess the reason is the default block size and the filesystem type.

Elapsed Time See sq40 (Squashfs4.0 in vanilla linux-2.6.33) first, and we find other
than the sequential access by single-process is slow. Additonally multi-process case
is worse. The test system is dual core. Ideally multi-process cases complete in half
of single-process. But the result shows differently and looks like CPU is not utilized
enough. I guess why the random access is slow is the fragment blocks and why multi-
process is slow is that the parallel decompression is unimplemented. Of course, if the
test system was single core, then multi-process and parallel decompression would be
meaningless.

In sq40nofrag, the degrade in multi-process case is almost equivalent to single-
process. And the random access shows twice as the sequntial access approximately. I
guess that the unimplemented parallel decompression is the reason.

To see how the parallel decompression is good, compare sq40para and sq40nofrag
para with sq40 and sq40nofrag individualy. The image file is same for each pair.

Both of sq40para and sq40nofrag para are patched by the parallel decompres-
sion patch (described earlier), and -no-fragments is added to sq40nofrag para.
In single-process, there is no big differennce. But in multi-process, the parallel decom-
pression contributes much. Of course, it consumes CPU much.

sq40nested which is nested loopback mount shows excellent. The cache is pow-
erfull and fast as uncompressed ext2. But we should care about the installed RAM. If
it is not so large, the performance will be damaged.

cloop took longer time. It may be due to the difference of the block size and the
file system type. But in multi-process, the additional reason is that the unsuppported
parallel decompression. Note that the degrade in the random access is small as the
difference of layer (remind that cloop is implemented in the block device layer) is
benefit.

In ext2, the first single-process sequential access shows very bad. I guess this is
due to my measurement since it is the first one of all. All file access in this case causes
accessing disk. Actually CPU(%io-wait) shows large value. All (almost?) files are
cached by this first case, and we cannot see CPU(%io-wait) in the succeeding cases.

FYI: Suppport for LZMA Just for your information, I measured sq40lzma (squashfs
4.0 LZMA for linux-2.6.34-rc6) and sqlzma34 (sqlzma patch for squashfs 3.4 in
2.6.27.4) too. As we expected, LZMA decompression is slow. sq40lzma takes twice
longer time than sq40 (squashfs4.0 ZLIB in 2.6.33). While sqlzma32 implements
the hybrid compression and the parallel decompression, and consumes almost all CPU
time, it is still slow.

Note that sq40lzma is not officially merged into linux kernel mainline, and it may
not be supported now. It is not fair to judge sq40lzma is not good by this simple mea-
sure and comparison only. Squashfs is aggressivly supporting various compressions
other than LZMA, and actually some of them are merged into mainline.

In this report, I have compared squashfs and other technologies around LiveCD. All of
cloop, dm-snapshot, squashfs and aufs are not bad. Obviously, the important thing is
up to users who decides their best compression and implementation after prioritize the
size, decompression speed, memory consumption and others.

Hope this helps.

